From knowledge-based to data-driven modeling of fuzzy rule-based systems: A critical reflection

نویسنده

  • Eyke Hüllermeier
چکیده

This paper briefly elaborates on a development in (applied) fuzzy logic that has taken place in the last couple of decades, namely, the complementation or even replacement of the traditional knowledge-based approach to fuzzy rule-based systems design by a data-driven one. It is argued that the classical rule-based modeling paradigm is actually more amenable to the knowledge-based approach, for which it has originally been conceived, while being less apt to data-driven model design. An important reason that prevents fuzzy (rule-based) systems from being leveraged in large-scale applications is the flat structure of rule bases, along with the local nature of fuzzy rules and their limited ability to express complex dependencies between variables. This motivates alternative approaches to fuzzy systems modeling, in which functional dependencies can be represented more flexibly and more compactly in terms of hierarchical structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Executive Approach Based On the Production of Fuzzy Ontology Using the Semantic Web Rule Language Method (SWRL)

Today, the need to deal with ambiguous information in semantic web languages is increasing. Ontology is an important part of the W3C standards for the semantic web, used to define a conceptual standard vocabulary for the exchange of data between systems, the provision of reusable databases, and the facilitation of collaboration across multiple systems. However, classical ontology is not enough ...

متن کامل

Comparing Methods for Knowledge-Driven and Data-Driven Fuzzy Modeling: A Case Study in Textile Industry

The aim of this study is to compare different approaches to fuzzy systems design from different perspectives: knowledge-driven versus data-driven and rule-based (flat) versus tree-based (hierarchical). More specifically, our comparison is focused on two of the arguably most important criteria in fuzzy systems design, namely accuracy and interpretability. We compare two approaches to data-driven...

متن کامل

A New GIS based Application of Sequential Technique to Prospect Karstic Groundwater using Remotely Sensed and Geoelectrical Methods in Karstified Tepal Area, Shahrood, Iran

In this research, recognition of karstic water-bearing zones using the management of exploration data in Kal-Qorno valley, situated in the Tepal area of Shahrood, has been considered. For this purpose, the sequential exploration method was conducted using geological evidences and applying remote sensing and geoelectrical resistivity methods in two major phases including the regional and local s...

متن کامل

Comparison of various knowledge-driven and logistic-based mineral prospectivity methods to generate Cu and Au exploration targets Case study: Feyz-Abad area (North of Lut block, NE Iran)

Motivated by the recent successful results of using GIS modeling in a variety of problems related to the geosciences, some knowledge-based methods were applied to a regional scale mapping of the mineral potential, special for Cu-Au mineralization in the Feyz-Abad area located in the NE of Iran. Mineral Prospectivity Mapping (MPM) is a multi-step process that ranks a promising target area for mo...

متن کامل

Improvement of Rule Generation Methods for Fuzzy Controller

This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.00646  شماره 

صفحات  -

تاریخ انتشار 2017